The UK Integrated Quantum Networks Hub
  • Home
  • Research
    • Quantum Memories
    • Dynamic Networking and Entanglement Distribution
    • Satellite Quantum Communications
    • Quantum Components
    • Quantum Protocols and Networking Theory
    • Quantum-safe Secure Communication & Standards
  • Partners
  • People
    • Leadership Team
    • Research Team
    • Operations Team
  • News
  • Events
  • QNetworks 2026
  • Contact
  • Menu Menu
image showing the configuration of the UK Quantum Network during the recent experimental demonstration securely transferring data between Cambridge and Bristol

Researchers Demonstrate the UK’s First Long-Distance Communication Over a Quantum Network

8 April, 2025

Researchers have successfully demonstrated the UK’s first long-distance ultra-secure transfer of data over a quantum communications network, including the UK’s first long-distance quantum-secured video call.

The team, from the Universities of Bristol and Cambridge, created the network, which uses standard fibreoptic infrastructure, but relies on a variety of quantum phenomena to enable ultra-secure data transfer.

The network uses two types of quantum key distribution (QKD) schemes: ‘unhackable’ encryption keys hidden inside particles of light; and distributed entanglement: a phenomenon that causes quantum particles to be intrinsically linked.

The researchers demonstrated the capabilities of the network via a live, quantum-secure video conference link, the transfer of encrypted medical data, and secure remote access to a distributed data centre. The data was successfully transmitted between Bristol and Cambridge – a fibre distance of over 410 kilometres.

This is the first time that a long-distance network, encompassing different quantum-secure technologies such as entanglement distribution, has been successfully demonstrated. The researchers presented their results at the 2025 Optical Fiber Communications Conference (OFC) in San Francisco.

Quantum communications offer unparalleled security advantages compared to classical telecommunications solutions. These technologies are immune against future cyber-attacks, even with quantum computers, which – once fully developed – will have the potential to break through even the strongest cryptographic methods currently in use.

In the past few years, researchers have been working to build and use quantum communication networks. China recently set up a massive network that covers 4,600 kilometres by connecting five cities using both fibreoptics and satellites. In Madrid, researchers created a smaller network with nine connection points that use different types of QKD to securely share information.

In 2019, researchers at Cambridge and Toshiba demonstrated a metro scale quantum network operating at record key rates of millions of key bits per second. And in 2020, researchers in Bristol built a network that could share entanglement between multiple users. Similar quantum network trials have been demonstrated in Singapore, Italy and the USA.

Despite this progress, no one has built a large, long-distance network that can handle both types of QKD, entanglement distribution, and regular data transmission all at once, until now.

The experiment demonstrates the potential of quantum networks to accommodate different quantum-secure approaches simultaneously with classical communications infrastructure. It was carried out using the UK’s Quantum Network (UKQN), established over the last decade by the same team, supported by funding from the Engineering and Physical Sciences Research Council (EPSRC), and as part of the Quantum Communications Hub project.

“This is a crucial step toward building a quantum-secured future for our communities and society,” said co-author Dr Rui Wang, Lecturer for Future Optical Networks in the Smart Internet Lab‘s High Performance Network Research Group at the University of Bristol. “More importantly, it lays the foundation for a large-scale quantum internet—connecting quantum nodes and devices through entanglement and teleportation on a global scale.”

“This marks the culmination of more than ten years of work to design and build the UK Quantum Network,” said co-author Adrian Wonfor from Cambridge’s Department of Engineering. “Not only does it demonstrate the use of multiple quantum communications technologies, but also the secure key management systems required to allow seamless end-to-end encryption between us.”

“This is a significant step in delivering quantum security for the communications we all rely upon in our daily lives at a national scale.” said co-author Professor Richard Penty, also from Cambridge and who headed the Quantum Networks work package in the Quantum Communications Hub. “It would not have been possible without the close collaboration of the two teams at Cambridge and Bristol, the support of our industrial partners Toshiba, BT, Adtran and Cisco, and our funders at UKRI.”

“This is an extraordinary achievement which highlights the UK’s world-class strengths in quantum networking technology,” said Gerald Buller, Director of the IQN Hub, based at Heriot-Watt University. “This exciting demonstration is precisely the kind of work the Integrated Quantum Networks Hub will support over the coming years, developing the technologies, protocols and standards which will establish a resilient, future-proof, national quantum communications infrastructure.”

The current UKQN covers two metropolitan quantum networks around Bristol and Cambridge, which are connected via a ‘backbone’ of four long-distance optical fibre links spanning 410 kilometres with three intermediate nodes.

The network uses single-mode fibre over the EPSRC National Dark Fibre Facility (which provides dedicated fibre for research purposes), and low-loss optical switches allowing network reconfiguration of both classical and quantum signal traffic.

The team will pursue this work further through a newly funded EPSRC project, the Integrated Quantum Networks Hub, whose vision is to establish quantum networks at all distance scales, from local networking of quantum processors to national-scale entanglement networks for quantum-safe communication, distributed computing and sensing, all the way to intercontinental networking via low-earth orbit satellites.

Share this entry
  • Share by Mail
  • Facebook Facebook Share on Facebook
  • X-twitter X-twitter Share on X
  • Whatsapp Whatsapp Share on WhatsApp
  • Linkedin Linkedin Share on LinkedIn
https://iqnhub.org/wp-content/uploads/2025/04/Screenshot-2025-04-07-at-1.06.01 PM-2048x795-1.png 795 2048 Georgia Mortzou https://iqnhub.org/wp-content/uploads/2025/04/IQN-Logo_White-3.png Georgia Mortzou2025-04-08 09:28:022025-05-07 20:55:38Researchers Demonstrate the UK’s First Long-Distance Communication Over a Quantum Network

Latest News & Events

  • QNetworks 2026 – Registration now open29 January, 2026 - 10:08 am
  • Industry Partners’ Forum2 December, 2025 - 4:20 pm
  • Pupils in Theatre
    IQN Hub Outreach Event – Quantum Shorts1 December, 2025 - 3:40 pm
  • Shop-bought cable powers quantum breakthrough26 November, 2025 - 4:23 pm
  • Heriot-Watt University Quantum & Photonics Showcase 202514 November, 2025 - 9:57 am

Integrated Quantum Networks Hub

Institute of Photonics and Quantum Sciences
Heriot-Watt University
Edinburgh, EH14 4AS
United Kingdom

Privacy Policy

  • Doc-text-inv Doc-text-inv
    Newsletter signup
  • Comment Comment
    Contact us
Linkedin Linkedin X-twitter X-twitter
Link to: Hub researchers showcase quantum innovation in parliamentary event celebrating Scotland’s Critical Technologies Supercluster Link to: Hub researchers showcase quantum innovation in parliamentary event celebrating Scotland’s Critical Technologies Supercluster Hub researchers showcase quantum innovation in parliamentary event celebrating... Link to: New UK Quantum Hub launches to pioneer secure networks and advance the quantum internet Link to: New UK Quantum Hub launches to pioneer secure networks and advance the quantum internet Image showing the Hub Director, Professor Gerald Buller (a white, middle-aged man) addressing the audience in a lecture theatre at the Hub launch eventNew UK Quantum Hub launches to pioneer secure networks and advance the quantum...
Scroll to top Scroll to top Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsDecline settingsSettings

Cookie and Privacy Settings



How we use cookies

We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

Google Analytics Cookies

These cookies collect information that is used either in aggregate form to help us understand how our website is being used or how effective our marketing campaigns are, or to help us customize our website and application for you in order to enhance your experience.

If you do not want that we track your visit to our site you can disable tracking in your browser here:

Other external services

We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

Google Webfont Settings:

Google Map Settings:

Google reCaptcha Settings:

Vimeo and Youtube video embeds:

Other cookies

The following cookies are also needed - You can choose if you want to allow them:

Privacy Policy

You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

Privacy Policy
Accept settingsDecline settings